Happy Gears

Digamma developed a machine learning based proof-of-concept project for the Silicon Valley-based company Happy Gears.

Driven by the notion that the online traffic and patterns of the future can be predicted by analyzing the traffic and patterns of the past, Digamma’s project for Happy Gears focused on the analysis of digital network traffic patterns and prediction of online network traffic flows.

The technology was intended for capacity planning groups at large companies that run their own networks and data centers such as Google, Facebook, Dropbox and related companies.

The machine learning components of the project included: Machine learning components of the project:

  • Prediction of network traffic based on past data (e.g. time series)
  • Prediction of changes of traffic in the whole network in response to local changes. Algorithm assumes multivariate Gaussian distribution of data, and fits the model using Singular Value Decomposition (SVD)
  • Anomaly detection and investigation: finding correlations of anomalies with other variables

Machine learning techniques used:

  • SVD
  • Calibrated seasonal autoregressive integrated moving average (SARIMA) modelling
  • Dynamic Time Warping (DTW)
Other cases
Social Inertia

We provided strategic recommendations on how to effectively incorporate machine learning and a recommender system into the ActOn app and developed the final product.

Read more

Our team was involved in the design and implementation of MedNition’s machine learning framework, worked with diverse anonymized patient data and used a variety of medical information ontologies.

Read more